LEARNING TO FINGERPRINT: PHYSICAL LAYER IDENTIFICATION
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We investigate the use of a neural network to identify the transmitter of a random modu-
lated message, without any preamble or identifying code. The Cognitive Radio Testbed [1]
(FIT/CorteXlab) is used to collect experimental datasets in a reproducible way to train the

neural network.
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1 Introduction

In all digital communication protocols, packets are
always sent along with some sort of identification
code. That code adds data to send over valuable
radio space. In Internet of Things (IOT) proto-
cols such as SigFox, the issue is not throughput
but efficiency while sending small amount of data,
So packets are getting smaller and smaller but the
header stays the same, to the point up to 50% of
sent data is from the header and not user data.

Another aspect of this is that, on the physical
layers, it is currently extremely easy to imperson-
ate a given device simply by copying its identifi-
cation code. An identification scheme working on
RF characteristics of received signal[2] would allow
for the diminution of packet sizes and so either the
diminution of the cost to send a packet or an in-
crease in the payload capacity. And it would also
allow for an increase in security since a potential
attacker would need to reproduce hardware char-
acteristics of the attacked radio chip.

2 Experimental setup

Neural network

We demonstrate the use of a neural network (NN)
to classify the emitter of received packets. In our
case, the neural network is tasked of classifying
which emitter amongst 21 possible has sent a given
packet. This NN is set to use raw complex sam-
ples gathered directly after a software defined radio
(SDR) device (in our case a USRP) without any sig-
nal processing. The NN is a 4 layers network with
two convolutionnal and two fully connected layers.
Just before processing by the neural network, the
input samples from a packet are normalized with a
Ly norm.
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Figure 1: Architecture of the Neural Network

Datasets

We use the FIT/CorteXlab experimental platform
to generate reproducible datasets. This platform
consist of 38 nodes inside an isolated and ane-
choic chamber, each node being a computer associ-
ated with a SDR device (USRP or PicoSDR). This
means that we can experiment on any frequency
up to 6GHz without causing or suffering from any
interference from the outside world.

The datasets are generated by sending random
packets modulated in QPSK from the 21 different
transmitters and recording them on a unique re-
ceiver. GNU Radio is used to build simple flow-
graphs to emit and record packets for offline pro-
cessing by the neural network. We plan to publicly
release the datasets and the script used to gener-
ate them so that anyone can freely reproduce this
experiment and compare their algorithms.
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Figure 2: Recording GNU Radio flowgraph

In the dataset generation process, each trans-
mitter sends 50000 random packets one after an-
other and the emission power is the same for every



transmitter. The various transmitters are located
at different points in the FIT/CorteXlab room so
the distance to the receiver, and thus the attenua-
tion of the signal, is different for each emitter. To
reduce the effects of this, we also generate datasets
where the emission power is set to vary.

Figure 3: Variation of the received power over the
50000 received packets from one transmitter

Training

Generated datasets are split between training, val-
itation and testing data with 70% of the examples
for training, 10% for validation and 20% for testing.
The training is done by batches of 100 examples at
a time with 40k iterations of the training process
taking about half an hour on a i7-7820HQ CPU.

3 Results and ongoing works
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Figure 4: Confusion matrix of a network trained
after 200k iteration from a dataset with varying
emission power

Two metrics are important in this case: the abil-
ity to learn from a dataset, and the performance

over datasets generated with different parameters.
When data is not normalised and when the emission
power is static, the network is able to learn with
up to 99% accuracy in 40k iterations of the train-
ing process but is not able to perform on datasets
with different power settings. We achieve an accu-
racy of 80% with a network trained on 200k itera-
tions with varying emission power and normalisa-
tion with only a 10 point decrease in accuracy when
tested on datasets with different power settings.

But if there is some kind of change in the ex-
perimentation room, the networks are completely
lost. This means that it’s heavily reliant on the
caracteristices of the channel to distinguish differ-
ent emitters.

To reduce the dependency of the classification
over the channel characteristics, we will introduce
a robot (a Turtlebot) in the FIT/CorteXlab room
and have it wander randomly in the room with
metal reflectors.

4 Conclusion

We have demonstrated the use of a simple neural
network to identify the sender of random packets
from raw samples without any identification code.
This shows interesting prospects in reducing phys-
ical layer overhead payload and increasing security
in settings where mobility is not present.
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