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Our objective in this tutorial is on the one hand to get the user to become familiar with
some of the core concepts of discrete time signal processing, and on the other hand to exhibit
the flexibility of GNURadio and its graphical frontend GNURadio Companion to prototype
such concepts on synthetic and real signals. We address the issues of aliasing and filtering in
the context of frequency transposition and cross correlation for detecting a known pattern
in a noisy signal.

1 Frequency axis and decimation: the need for filtering

The abscissa of the Fourier transform is from −fs/2 to +fs/2 so that decimating by N will yield a Fourier
axis from −fs/(2N) to +fs/(2N). Decimating aims at completing two tasks: zooming on the relevant
signal in the frequency axis close to baseband (centered on 0-Hz frequency), and reducing the number
of samples processed. However, simple decimation by N by taking one in N samples (in Matlab syntax,
x(1:N:end)) might bring some unwanted spectral component close to baseband and prevent extracting
the wanted information. Hence, decimating must always be prefixed with a low pass filter step cutting
at less than fs//(2N). This low pass filtering is performed using a convolution with a Finite Impulse
Response (FIR) filter, available as a GNURadio signal processing block. Care must be taken though to
wisely select the transition width ∆f , which dictates the length of the taps b defining the filter. Indeed,
a Fourier transform on P samples generates bin sizes of fs/P width. Selecting a transition width ∆f
smaller than fs/P will not allow fitting the filter shape if P is too small. On the other hand, selecting a
small ∆f will require a large P = fs/∆f i.e. a long filter with many coefficient, requiring this extensive
computational power to generate each output sample yn =

∑
k bk · xn−k.

2 Frequency transposition

Multiplication – yielding addition of the argument of the trigonometric functions – will lead to possible
aliasing during the frequency transposition process if no care is taken to filter out the aliased images.

Indeed, the periodic signal exp(jω1t) multiplied by the periodic signal exp(jω2t) yields exp(j(ω1 +
ω2)t): multiplication in the time domain is addition in the frequency domain. For a signal discretized in
time, there is no reason for (ω1 + ω2)/(2π) to comply with Shannon’s theorem of being below half the
sampling rate, making the sum frequency easily aliased, possibly close to baseband and preventing the
demodulation of the information carried by the carrier.

Care must hence be taken to filter this aliased image: rather than filling the taps of the low pass
filter of the Xlating FIR filter, selecting a low-pass filter to reject this aliased image will prevent such
issues in most cases. Sometimes, the image will reach exactly back to baseband and cannot be filtered:
eliminating the unnecessary spectral component prior to frequency shifting and decimation is mandatory,
as shown in the next section.
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Figure 1: Flowchart demonstrating frequency transposition of a real signal characterized by an even
spectrum.

Figure 2: Left: no filtering, so that the aliased image of the negative component of the spectrum comes
in the positive part of the spectrum close to baseband. Right: filtered image.

Demonstrate the concept by listening to two commercial broadcast FM stations simulta-
neously

The hardware DVB-T dongle brings, through mixing with a local oscillator generated by a Phase
Locked Loop (PLL), the radiofrequency to baseband (centered on 0-frequency). The remote oscillator
is never at the exact same frequency than the receiver oscillator: some tuning is needed to adjust
the local oscillator to the remote carrier frequency. The problem is enhanced with direct frequency
spectrum spreading in which the emitted carrier frequency jumps continuously from one value to another
in a known sequence. The receiver PLL cannot track fast enough these carrier jumps, and a two-
step mixing is performed by first applying a coarse transposition (from radiofrequency to within the
sampling bandwidth) using the hardware PLL and a second transposition is applied using a software
implementation of the Numerically Controlled Oscillator. Since exp(jωRF t)·exp(jωNCOt) = exp(j(ωRF+
ωNCO)t), both oscillator frequencies are added to bring the received signal to baseband. This technique
is so common that it is implemented in GNU Radio Companion as the Xlating FIR Filter. We will use
this block to listen simultaneously to multiple FM broadcast stations: again the only characteristic of
the receiver that matters is the bandwidth (and hence the sampling rate), while the carrier frequency is
of little interest other than in defining antenna dimensions and compliance with regulations.
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3 Hilbert transform when recording real signals

cos(ωt) = 1
2 (exp(jωt) + exp(−jωt)) so that the Fourier transform exhibits two peaks at −ω and +ω.

This information is redundant and the even Fourier distribution only duplicates the information from
the positive frequency range in the negative range. If we wish to process the signal, we might want to
get rid of the negative spectral component to avoid aliasing unwanted spectral components during the
frequency transposition.

A signal with only a positive spectral component is defined by exp(jωt) = cos(ωt) + j sin(ωt). We
see that with respect to the previous expression cos(ωt) when considering the real signal, a j sin(ωt)
was added. Getting rid of the negative part of the spectrum can be generalized hence by adding to a
real signal an imaginary part in quadrature to the real signal. This transform is called the Hilbert
transform, and is classically applied in RADAR signal processing when the real signal only is collected,
e.g. with a hardware frequency transposition using a mixer for example. It is of course provided as a
GNURadio signal processing block.

In this demonstration, we show how getting rid early in the processing chain of the negative part
of the even spectrum by creating the quadrature imaginary component helps further processing steps.
This processing chain was used when decoding DCF77 (77.5 kHz carrier) with a sound card (192 kHz
sampling rate).
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Identify the unwanted frequency components of the signal – to be eliminated by filtering
prior to signal processing to extract the information content on the modulation of the
carrier – when recording the DCF77 signal and transposing to baseband.

4 Correlation

All CDMA and most communication protocols will start with a header to be identified before decoding
the message. Correlation is the mathematical tool for finding a pattern in a noisy signal: corr(τ) =∫
p(t) · s(t + τ)dt. This operation looks similar to the convolution, except for the lack of time reversal

in the second term. As with the convolution, an N delay correlation on an N sample dataset requires
N2 multiplications. As in the convolution, computing a correlation is most efficiently performed in the
Fourier domain. Indeed

1. the convolution theorem tells us that FT (conv(x, y)(τ)︸ ︷︷ ︸∫
x(t)y(τ−t)dt

) = FT (x) · (FT (y)) with FT the Fourier

transform

2. since exp(jωt)∗ = exp(−jωt), with ∗ the complex conjugate, reverses the time of the argument,
then

3. corr(x, y)(τ) = FT (x) · FT ∗(y)

Since the Fourier transform is, through its Fast Fourier Transform, a N ln2(N) complexity algorithm,
computing the correlation through the product of the Fourier transform of the reference channel with
the complex conjugate of the Fourier transform of the surveillance channel is most efficient. This concept
can be demonstrated in GNU Radio Companion using the flowchart of Fig. 4.

In this example, three time delays are introduced in a random source whose autocorrelation function
is ideally a Dirac peak centered on 0-delay. The sum of the three delayed copies, representing three
targets reflecting the incoming random but known signal, are visible in the correlation map displayed as
a waterfall (Fig. 4).

While the sum of the three signals is well visible on the waterfall chart, their shape does not match
the expected cosine and triangle variations of the delays. The throttle block aims at preventing the
scheduler from saturating the processing capabilities of the host computer by feeding the processing blocks
with too many samples in the absence of hardware bandwidth limiter, but does not claim accurate timing.
Hence, depending on processing load, the time will run at varying speed, leading to the fluctuating shape
of the delays. Nevertheless, the capability of the cross-correlation function to extract multiple echoes as
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defined by time delays of a known random pattern emitted by a radiofrequency source is demonstrated
in an efficient way though Fourier transform to compute the cross-correlation. As usual with RADAR
processing, the sampling rate defines the bandwidth and hence the range resolution (cross-correlation
peak width), while the number of samples on which the cross-correlation is computed (i.e. number of
samples of the Fourier transforms) is equivalent to the pulse repetition period (number of samples divided
by the sampling rate), defining the furthest target to be detected before spatial aliasing occurs.
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