
Getting the most  
out of your FFT

Xk =
N−1

∑
n=0

xn ⋅ e− 2πi
N kn

Paul Boven - PE1NUT

p.boven@xs4all.nl

mailto:p.boven@xs4all.nl


Goals
•Spectral Line (e.g. 21cm) observing

•Detect weak, very distant sources
•Determine their frequency, line profile

Requires:

•High Sensitivity
•Sharp Frequency Bins
•Low Computational Effort



Measuring Noise Power
• P = U·I 
• U = I ·R
• P = U2 / R

• Input: Gaussian Noise
• Square each sample, scales with power
• Average the power measurements
• For large N, uncertainty scales with 1/√N

To get large N: 
• Long Observation
• High Bandwidth

To get 1% accuracy 
in noise power: 
N > 10,000



Hello World

• Good for high dynamic range (log scale)
• Low CPU impact (runs only 10 times per second)
• This example: only 1% of samples get used

• 1024 bins, 10 Hz, 1MS/s
• Poor sensitivity
• Long time averaging required



FFT all the samples

• Resolution: 20MHz / 4096 = 5 kHz
• 1% power accuracy
• Update rate is samp_rate / bins / integrations = 2s
• Lag is tens of seconds !



Flushing the Pipeline

• Repeat the output of the integrator
• Only happens every 2 seconds anyway
• Flushes buffers so Vector Sink updates immediately
• Also introduced normalisation:

• np.repeat(1/integration, bins)
• After integration, so it takes far less CPU



The Window Function
• Applied cyclically to the input data before FFT
• Goal: suppress side-lobes for f ≠ fs / N
• Side effects:

• Reduction in Frequency Resolution
• Reduction in SNR: Samples at edges have low weight

So
ur

ce
: W

ik
ip

ed
ia



FFT without Overlap

Window

Window

Window

Window

X
X

X
X

FFT
FFT

FFT
FFT

• Low (zero) weight for samples at window edge
• Loss of sensitivity, as samples are thrown away



FFT with Overlap

Window

Window

Window

Window

Window

Window

• Increase in CPU resources scales with overlap factor !



Sync Window

• The dual of a rectangular (box) function is the sinc
• sinc(x) = sin(x)/x

• For x=0, sinc(x) = 1
• Extends into infinity (in time domain)
• Truncation in time required

• Less perfect ‘box’ shape in frequency space
• Window much longer than FFT length

• Scale of Sinc determines width of frequency ‘box’
• Determine overlap or gap between bins

Frequency Time



Polyphase
FIR 0

FIR 1

FIR 2

FIR 3

FFT

• Implement long window as group of FIR filters
• Polyphase decomposition
• GRC does this for us 

• Longer filter gives better frequency response
• But loses time resolution



Polyphase in GRC

• Would be much more useful with a vectorised output ! 

• One bin ‘wraps around’, contains highest and lowest frequencies
• For a small number of channels, shift frequency by half a bin



Weight Overlap Add

• Sinc window (perhaps multiplied with e.g. hamming)
• Same behaviour as polyphase, just different implementation
• More overlaps allows less truncated sinc(x) 

• Better frequency box shape
• Worse time resolution

Source: https://arxiv.org/pdf/1607.03579.pdf

https://arxiv.org/pdf/1607.03579.pdf


Weight Overlap Add (WOLA)

• sinc_sample_locations: np.arange(-np.pi*4/2.0, np.pi*4/2.0, np.pi/chans)
• sinc: np.sinc(sinc_sample_locations/np.pi)
• custom_window: sinc*np.hamming(4*chans)
• Top to bottom: custom_window[-chans:], [2*chans:3*chans], [chans:2*chans], [0:chans]
• Based on: http://wvurail.org/dspira/labs/05/



Merci de votre attention


