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Background

ISL: French-German Research
Institute of Saint-Louis in
France

STC group in charge of telemetry
and bi-directional links with
flying projectiles

Work developed within a PhD
funded by ISL, supervised by ISL
and XLIM

XLIM: A multidisciplinary
Research Institute located on
several geographical sites, mainly
in Limoges but also in Poitiers
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Background

Many Software Defined Radio (SDR) tracking applications in research focus on
tracking mobile phones, vehicles, satellites, etc [1-2] with various difficulties to

overcome (indoor localization, multi-path).

[1]: V. Nambiar et al., "SDR based indoor localization using ambient WiFi and GSM signals," 2017 ICNC.
[2]: V. Y. Vu and A. B. Delai, "Digital Solution for inter-vehicle localisation system by means of Direction-Of-Arrival," 2006 ISISPC

[3]: J. D. Pinezich et al., "Ballistic Projectile Tracking Using CW Doppler Radar," in IEEE TAES, July 2010
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Background

Many Software Defined Radio (SDR) tracking applications in research focus on
tracking mobile phones, vehicles, satellites, etc [1-2] with various difficulties to

overcome (indoor localization, multi-path).

Projectile tracking is usually performed using dedicated active radars [3] .

# Our project:

develop a passive high-speed projectile tracking system based on commercial
SDR and antenna arrays

[1]: V. Nambiar et al., "SDR based indoor localization using ambient WiFi and GSM signals," 2017 ICNC.
[2]: V. Y. Vu and A. B. Delai, "Digital Solution for inter-vehicle localisation system by means of Direction-Of-Arrival," 2006 ISISPC
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Proposed solution

Canon Projectile Backstop

Receive
station

Steered antenna array electronically follows projectile (ho mechanical
displacement)

Direction of the projectile computed from received signals (DOA)

Array main lobe steered towards estimated direction of the transmitter
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Used signhal processing

By influencing on the phase shifts between signals:
favor constructive interference for chosen particular © (DOA).

focus reception/transmission energy in wanted direction while limiting it in others

COdGdaQoaQn

For a Uniform Linear Array (ULA), phase shifts between adjacing elements :

21 A: wavelength
A d: inter-element spacing
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Used signhal processing
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The DOA is computed using the conventional beamformer algorithm (Bartlett)

- Only one transmitting source

- Easy and fast to implement

- Less computationally demanding than MUSIC
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Used signhal processing

The DOA is computed using the conventional beamformer algorithm (Bartlett)

- Only one transmitting source
- Easy and fast to implement

- Less computationally demanding than MUSIC
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Used signhal processing

Work presented here focuses on reception mode.
Commercial UBX-160 & Octoclock
- frequency and sampling time synchronization between channels

- NO phase synchronization between channels

b Initialization position referred as “ 8 = 0° ” position.
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Simulation in GNU Radio

Aimed application: passive solution for projectile following

Canon Projectile Backstop
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Estimated DOA used to steer array main lobe in projectile direction in real-time

O values were generated from a previous firing to run simulations in GNU Radio



Simulation in GNU Radio

Options Variable
ID: top_block ID: samp_rate
Generate Options: QT GUI Value: 1M
Variable Variable
ID: angle_resolution | | 1D: nb_samples_DoA
Value: 1 Value: 128

File Source

File: ..reelle_a_3 33 1M.dat

Repeat: No

Constant Source
Constant: 1

Signal Source
Sample Rate: 1M

Throttle
Sample Rate: 1M

DoA ULA general 3
nbEchantillons: 128
angres: 1

d_norm: 500m

File Sink
File: ..._1M_angres_1_DoA.dat
Unbuffered: On
Append file: Overwrite

Multiply Const

Constant: -1

Beam steering ULA
d_norm: 500m
nbEchantillons: 128

Waveform: Cosine I
Frequency: 1k
Amplitude: 1
Offset: 0

Expected performance for a particular setup

File Sink
File: ..._1M_angres 1 Pow.dat
Unbuffered: On
Append file: Overwrite

Beam steering ULA

nbEchantillons: 128

Complex To Real

Multiply Conjugate

Add




Simulation in GNU Radio

File Sink
File: ..._1M_angres_1_DoA.dat
Unbuffered: On
Append file: Overwrite

Options Variable Constant Source
Constant: 1

ID: top_block ID: samp_rate
Generate Options: QT GUI Value: 1M

DoA ULA general 3

Variable Variable nbEchantillons: 128
ID: angle_resolution ID: nb_samples_DoA angres: 1
Value: 1 Value: 128 d_norm: 500m

Multiply Const
Constant: -1

File Source
File: ..reelle_a_3 33 1M.dat
Repeat: No

Throttle
Sample Rate: 1M

Beam steering ULA -
d_norm: 300m

Beam steering ULA

Signal Source nbEchantillons: 128

d_norm: 500m

Sample Rate: 1M nbEchantillons: 123

Waveform: Cosine I

Frequency: 1k
Amplitude: 1
Offset: 0

File Sink
A e T L BT S Complex To Real Multiply Conjugate
Unbuffered: On
) Add
Append file: Overwrite

Expected performance for a particular setup

0 values simulate sampling for projectiles of different speeds and for different
sampling rates



Simulation in GNU Radio

Variable
ID: samp_rate
Value: 1M

Options
ID: top_block
Generate Options: QT GUI

Constant: 1

Variable Variable
ID: angle_resolution | | 1D: nb_samples_DoA
Value: 1 Value: 128

File Source
File: ..reelle_a_3 33 1M.dat
Repeat: No

Constant Source

File Sink
File: ..._1M_angres_1_DoA.dat
Unbuffered: On
Append file: Overwrite

nbEchantillons: 128
angres: 1
I d_norm: 500m

Multiply Const
Constant: -1

Throttle
Sample Rate: 1M

Beam steering ULA -

Beam steering ULA
d_norm: 500m
nbEchantillons: 128

Signal Source
Sample Rate: 1M

d_norm: 300m
nbEchantillons: 128

Waveform: Cosine I
Frequency: 1k

Amplitude: 1
Offset: 0

File Sink
File: ..._1M_angres 1 Pow.dat
Unbuffered: On
Append file: Overwrite

Complex To Real Multiply Conjugate
Add

Expected performance for a particular setup

0 values simulate sampling for projectiles of different speeds and for different

sampling rates

DOA estimation performance can be adjusted by setting DOA search angular
resolution and number of samples per estimation.



Simulation in GNU Radio

Options Variable
ID: top_block ID: samp_rate
Generate Options: QT GUI Value: 1M
Variable Variable
ID: angle_resolution | | 1D: nb_samples_DoA
Value: 1 Value: 128

File Source
File: ..reelle_a_3 33 1M.dat
Repeat: No

Constant Source
Constant: 1

DoA ULA general 3
nbEchantillons: 128
angres: 1

d_norm: 500m

Signal Source
Sample Rate: 1M

Throttle
Sample Rate: 1M

Waveform: Cosine I
Frequency: 1k
Amplitude: 1
Offset: 0

Beam steering ULA
d_norm: 500m
nbEchantillons: 128

File Sink

File: ..._1M_angres_1_DoA.dat
Unbuffered: On
Append file: Overwrite

Multiply Const
Constant: -1

File Sink
File: ..._1M_angres 1 Pow.dat
Unbuffered: On
Append file: Overwrite

Complex To Real

Expected performance for a particular setup

Signal amplitudes normalized to unit

Multiply Conjugate

Beam steering ULA
d_norm: 300m
nbEchantillons: 128

Add




Simulation in GNU Radio

File Sink
File: ..._1M_angres_1_DoA.dat
Unbuffered: On
Append file: Overwrite

Options Variable Constant Source
Constant: 1

ID: top_block ID: samp_rate
Generate Options: QT GUI Value: 1M

DoA ULA general 3

Variable Variable nbEchantillons: 128
ID: angle_resolution ID: nb_samples_DoA angres: 1
Value: 1 Value: 128 d_norm: 500m

Multiply Const
Constant: -1

File Source
File: ..reelle_a_3 33 1M.dat
Repeat: No

Throttle
Sample Rate: 1M

Beam steering ULA -
d_norm: 300m

Beam steering ULA

Signal Source nbEchantillons: 128

d_norm: 500m

Sample Rate: 1M nbEchantillons: 123

Waveform: Cosine I

Frequency: 1k
Amplitude: 1
Offset: 0

File Sink
A e T L BT S Complex To Real Multiply Conjugate
Unbuffered: On
Append file: Overwrite

Expected performance for a particular setup
Signal amplitudes normalized to unit

Program ability to maintain phase alignement between channels assessed by
computing |skg|?



Simulation in GNU Radio

Options Variable Constant Source File Sink
ID: top_block ID: samp_rate Constant: 1 File: ..._1M_angres 1_DoA.dat
Generate Options: QT GUI Value: 1M Unbuffered: On
DoA ULA general 3 Append file: Overwrite
Variable Variable nbEchantillons: 128
ID: angle_resolution | | 1D: nb_samples_DoA angres: 1
Value: 1 Value: 128 d_norm: 500m

Multiply Const

File Source Constant: -1

File: ..reelle_a_3 33 1M.dat
Repeat: No

Throttle
Sample Rate: 1M

Beam steering ULA

Beam steering ULA d_norm: 300m

nbEchantillons: 128

Signal Source
Sample Rate: 1M
Waveform: Cosine I
Frequency: 1k
Amplitude: 1
Offset: 0

d_norm: 500m
nbEchantillons: 128

File Sink

File: ..._1M_angres 1 Pow.dat Complex To Real
Unbuffered: On

Append file: Overwrite

4

, 2T . .
Sum Signal (6, HDOA) = e](n_l)T d(sinf —sinfpoa)

n=1




Simulation in GNU Radio

Constant Source
Constant: 1

File Sink
File: ..._1M_angres_1_DoA.dat
Unbuffered: On
Append file: Overwrite

Options Variable
ID: top_block ID: samp_rate
Generate Options: QT GUI Value: 1M

DoA ULA general 3

Variable Variable nbEchantillons: 128
ID: angle_resolution ID: nb_samples_DoA angres: 1
Value: 1 Value: 128 d_norm: 500m

Multiply Const
Constant: -1

Repeat: No

File Source
File: ..reelle_a_3 33 1M.dat

Throttle
Sample Rate: 1M

Beam steering ULA

Beam steering ULA d_norm: 300m

Signal Source nbEchantillons: 128

d_norm: 500m
nbEchantillons: 128

Sample Rate: 1M
Waveform: Cosine I

Frequency: 1k
Amplitude: 1
Offset: 0

File Sink

A e T L BT S Complex To Real Multiply Conjugate
Unbuffered: On

Append file: Overwrite

4
Z ej(n—l)zTn d(sinf —sinbpoa)

Sum signal(8,0pp4) =

n=1

4

. 21 . )
_ E j(n—1)=-d(sinf —sinfbppa)
Greception simulation (9» QDOA) - e A

n=1



Simulation in GNU Radio

Options Variable
ID: top_block ID: samp_rate
Generate Options: QT GUI Value: 1M
Variable Variable
ID: angle_resolution | | 1D: nb_samples_DoA
Value: 1 Value: 128

File Source

Repeat: No

File: ..reelle_a_3 33 1M.dat

Constant Source
Constant: 1

:

Signal Source
Sample Rate: 1M

Waveform: Cosine I

Frequency: 1k
Amplitude: 1
Offset: 0

Throttle
Sample Rate: 1M

Beam steering ULA
d_norm: 500m
nbEchantillons: 128

DoA ULA general 3
nbEchantillons: 128
angres: 1

d_norm: 500m

File Sink
File: ..._1M_angres_1_DoA.dat
Unbuffered: On
Append file: Overwrite

Multiply Const

Constant: -1

Beam steering ULA
d_norm: 300m

nbEchantillons: 128

File Sink

Unbuffered: On

File: ..._1M_angres 1 Pow.dat

Append file: Overwrite

Complex To Real Multiply Conjugate
Add

Presented simulation is for a projectile flying at Mach 4,9 (= 1670 m/s)

Sampling rate 1MS/s, DOA search 1° precise with 128 samples per DOA estimation



Simulation in GNU Radio

Estimated DOA (red) vs 0 values given to the program (blue)
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Simulation shows the program can accurately follow the projectile at

Mach 4,9 (faster than real fired projectiles)



Simulation in GNU Radio

Computed power after compensation using DOA
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Simulation in GNU Radio

«10° Computed power after compensation using DOA

LAV VA VAVAVAVATIVITILT b
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----computed power

Normalized power received by array (dB)
w

-4 |—theoretical maximum i

5 _

6|, | | | i | i

0 0.05 0.1 0. 1(5 \ 0.2 0.25 0.3
time (s

Reception gain variations below 10~2dB

» successfully maintained constant over projectile trajectory by accurately
steering array main lobe in projectile direction.
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Measurement results

Fired projectiles
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Measurement results

Options Variable Variable

1D: tracking_DoA_ULA_1M ID: center_freq || ID: samp_rate

Generate Options: 0T GUI || Value: 2.363G Value: 1M QT GUI Range
1D: validation
Default Value: 0
Start: 0
Stop: 1

UHD: USRP Source QT GUI Range ZEE
Device Address: add...0.1.20 1D: gain_tx

Default Value: 30
Start: 0

Constant Source
Constant: 0

Sync: unknown PPS
MbO: Clock Source: External

Variable
ID: nb_samples_DoA
Value: 128

Variable
ID: angle_resolution
Value: 1

Mb0: Time Source:
Mb1: Clock Source: External
Mb1: Time Source: External
Samp Rate (Sps): 1M

ChO: Center Freq (Hz): 2.369G
ChO: Gain Value: 30

ChO: Antenna: TX/RX

Ch1: Center Freq (Hz): 2.369G
Ch1: Gain Value: 30

Chl: Antenna: TX/RX

Stop: 32
Step: 500m

|

Ch2: Center Freq (Hz): 2.369G
Ch2: Gain Value: 30

Ch2: Antenna: TX/RX

Ch3: Center Freq (Hz): 2.369G
Ch3: Gain Value: 30
Ch3: Antenna: TX/RX

QT GUI Range Burst Tagger
1D: trigger True KeylD: burst
Default Value: 0 ::f?::;l:.s;;k True Value: True
Start: 0 > ' False KeylD: burst
Stop: 1 False Value: False
Step: 1

DoA ULA general 3
nbEchantillons: 128
angres: 1

d_norm: 500m

Constant Source
Constant: 0

Multiply Const
Constant: -1

Tagged File Sink
Sample Rate: 1M

Float To Short
Scale: 1
Complex To Real

Projectiles fired at Mach 1,3 in June

Transmitter onboard projectile GFSK 2Mbits/s @ 2,369 GHz

Projectile directly visible by antenna array in the [-60°; +50°] angular range

Conventional beamformer (Bartlett) algorithm

1MS/s sampling rate

128 samples per DOA estimation with 1° of angular resolution



Measurement results

Options Variable Variable Variable
1D: tracking_DoA_ULA_1M ID: center_freq || ID: samp_rate ID: nb_samples_DoA
Generate Options: 0T GUI || Value: 2.363G Value: 1M QT GUI Range Value: 128
1D: validation
Default Value: 0 Variable
Start: 0 ID: angle_resolution
Stop: 1 Value: 1

UHD: USRP Source
Device Address: add...0.1.20
Sync: unknown PPS
MbO: Clock Source: External
Mb0: Time Source: External
Mb1: Clock Source: External
Mb1: Time Source: External
Samp Rate (Sps): 1M
ChO: Center Freq (Hz): 2.369G
[ ChO: Gain Value: 30

ChO: Antenna: TX/RX
Ch1: Center Freq (Hz): 2.369G
Ch1: Gain Value: 30
Ch1: Antenna: TX/RX
Ch2: Center Freq (Hz): 2.369G
Ch2: Gain Value: 30
Ch2: Antenna: TX/RX
Ch3: Center Freq (Hz): 2.369G
Ch3: Gain Value: 30
Ch3: Antenna: TX/R

QT GUI Range
1D: gain_tx
Default Value: 30}
Start: 0
Stop: 32
Step: 500m

Constant Source
Constant: 0

Constant Source

Burst Tagger
True KeylD: burst
True Value: True

l False KeyID: burst
False Value: False

Tagged File Sink
Sample Rate: 1M

Float To Short
Scale: 1

Multiply Const
Constant: -1

DoA ULA general 3
nbEchantillons: 128

Beam steering ULA
d_norm: 500m

Constant Source

GUI Range Burst er Constant: 0
I?;:rtrigger " True Ke::::urst I I
Tagged File Sink Scale: 1
Default Value: 0 True Value: True *
Start: 0 False KeylD: burst Multiply Conjugate
Stop: 1 False Value: False
Step: 1

Compensation of phase-shifts created by hardware and antennas
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Measurement results

15t projectile

Estimated DOA vs true angle (conventional Bearformer with verification of DOA by 50°)
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Measurements outside [-60°; +50°] irrelevant



Measurement results

15t projectile

Estimated DOA vs true angle (conventional Bearformer with verification of DOA by 50°)
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Accurate DOA
estimations
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Accurate DOA acquisition in [-30°; +30°]
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Noise peaks between 0,5 and 0,6s, and between 1,1 and 1,2s.



Measurement results

2" projectile
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Measurement results

2" projectile

Estimated DOA vs true angle (conventional Bearformer with verification of DOA by 50°)
100 I \ T | | T

—estimated DOA
80~ | ---true angle

60

40+
20- DOA noise
peaks

Irrelevant

angle ()
=]

———

time (s)

DOA acquisition noisier than with the 15t projectile

Noise peaks between 0,5 and 0,6s, and between 0,8 and 0,9s



Measurement results

3" projectile

Estimated DOA vs true angle (conventional Bearformer with verification of DOA by 30°)
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Measurement results

3" projectile

Estimated DOA vs true angle (conventional Bearformer with verification of DOA by 30°)
80 I I I I I I I I
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Irrelevant
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“time (s)

DOA verification loop blocked DOA at -90° between 0,7 and 0,8s

» wrong estimates over 0,05s



Measurement results
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Measurement results

3 point averaging
15t projectile

Irrelevant
& Normalized reception gain (conventional beamformer with DOA verification by 50°)
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Gain losses represent a minority of points

Besides noise peaks, reception gain is constant within 5dB



Measurement results

3 point averaging (Zoom)
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Measurement results

2" projectile
Irrelevant

Normalized reception gain {conventional beamformer with DOA verification by 50°)
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Measurement results

2" projectile

reception gain normalized to the theoretical maximum (dB)

Normalized reception gain {conventional beamformer with DOA verification by 50°)
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Measurement results

3 point averaging
2" projectile
Irrelevant

Normalized reception gain (conventional beamformer with DOA verification by 50°)
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Measurement results
10 point averaging
2" projectile
Irrelevant

Normalized reception gain (conventional beamformer with DOA verification by 50°)
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Measurement results

3" projectile

Irrelevant

Normalized reception gain (conventional beamformer with DOA verification by 30°)
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Measurement results

3" projectile

3 point averaging

Irrelevant

Normalized reception gain (conventional beamformer with DOA verification by 30°)
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Measurement results
10 point averaging
3" projectile
Irrelevant

Normalized reception gain (conventional beamformer with DOA verification by 30°)
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DOA errors aside, the averaged reception gain remains over
-5dB over the projectile trajectory
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Conclusion

A passive solution for high-speed projectile tracking using commercial UBX-160 and
GNU Radio is proposed

The needed signal processing functions are implemented in GNU Radio

A simple solution for phase synchronization with UBX-160 is proposed to perform
phase coherent applications

Simulations run in GNU Radio show that the program and equipment are able to
follow high-speed projectiles and gives a first insight on expected performance

First measurements have been performed with real projectiles and have
demonstrated the system ability to follow projectiles in real conditions

Errors in DOA have been found, but the reception gain has been shown to remain
constant within 5dB for the projectile trajectory with accurate estimation
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Outlooks

Measurements using other DOA algorithms (Capon)

Hardware update for remote measurement triggering

Increase of the sampling rate to 25MS/s to run while performing telemetry reception
measurements

Research on embedding SDR components in gyrostabilized projectiles



